PROPELNY ENERGY

NYISO Presentation October 24, 2022

- New York Developers focused on New York with 350+ years of experience
- Built upon two intertie solutions that are viable, sufficient, and expandable
- Modular, scalable solutions with future expandability considerations
- Completeness of proposals aligned for Permitting & Execution
 - Extensive routing and engineering completed
 - Detailed siting and permitting considerations
- Article VII readiness
- Base schedule in-service date: 2028 (Sol.1–5), 2030 (Sol. 6&7)

Agenda

- The Team
- Project Benefit Highlights
- Routing, Siting, and Permitting
- Technical Design & Engineering
- Summary

- New York-based, New York-focused transmission owners and developers
- Formidable public-private transmission development team
- Extensive history developing, siting, constructing, and operating major electric transmission facilities
- Dedicated, experienced, and proven professionals

Project Benefit Highlights

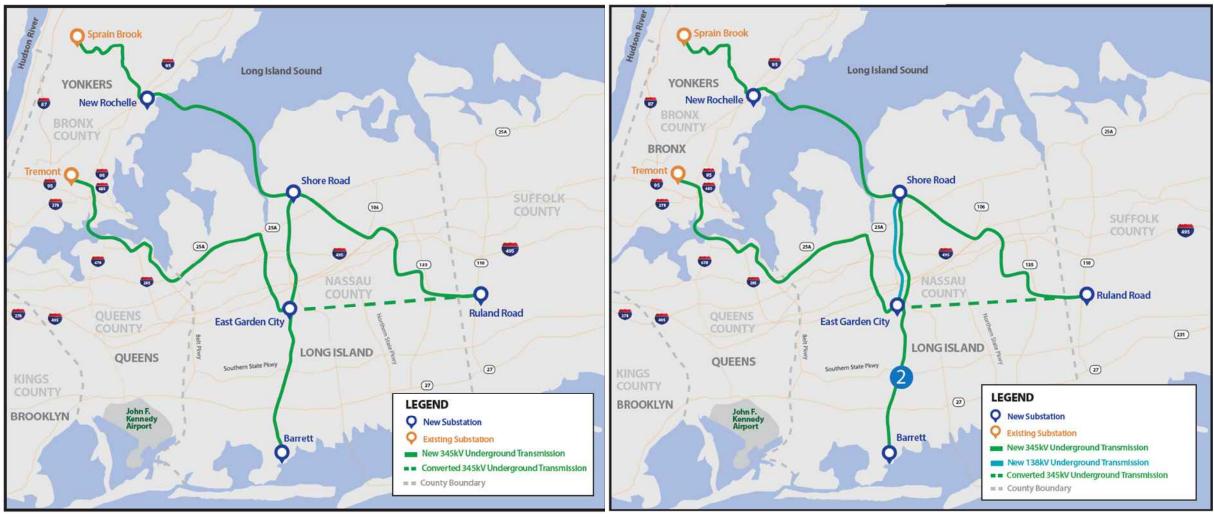
Solution Strategy

• Optimization:

Two Solution Architecture

Diversity and innovation amongst project solutions:

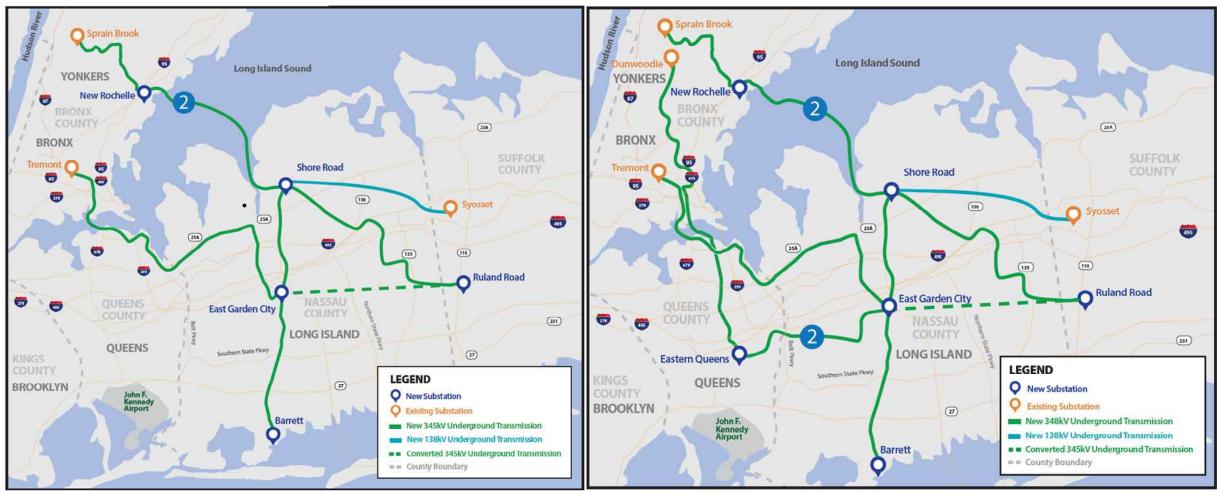
- Solution 1 Family (#1, #3, #5, #6)
 - Create a 345kV network with a resilient backbone


 Create major hubs: East Garden City, Shore Road, and Ruland Road
 Flexible OSW points of interconnection
 - Pursue low-cost upgrade opportunities in Long Island transmission system:
 o e.g. EGC-Newbridge-Ruland Rd 138 kV to 345 kV conversion

• Solution 2 Family (#2, #7)

- Achieve the least cost solution while providing comparable transfer limit performance and production cost savings
 - Create new 345 kV direct ties from generation sources outward for exporting/importing
- Reinforce 138 kV tie #903 @ Jamaica
- Solutions #6 and #7: Create 345/138 kV hub at Eastern Queens
- **Solution #7:** Create additional sourcing points for export via Northport HVDC

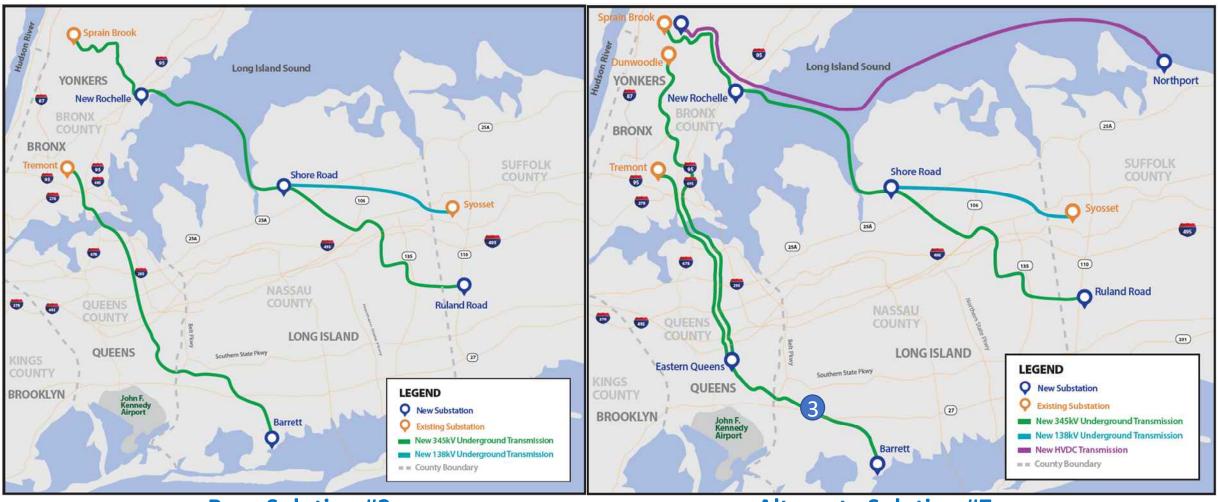
Family 1 Solutions #1 and #3



Base Solution #1

Base Solution #3

Family 1 Solutions #5 and #6



Alternate Solution #5

Alternate Solution #6

Family 2 Solutions #2 and #7

Base Solution #2

Alternate Solution #7

Increase in Transfer Limits

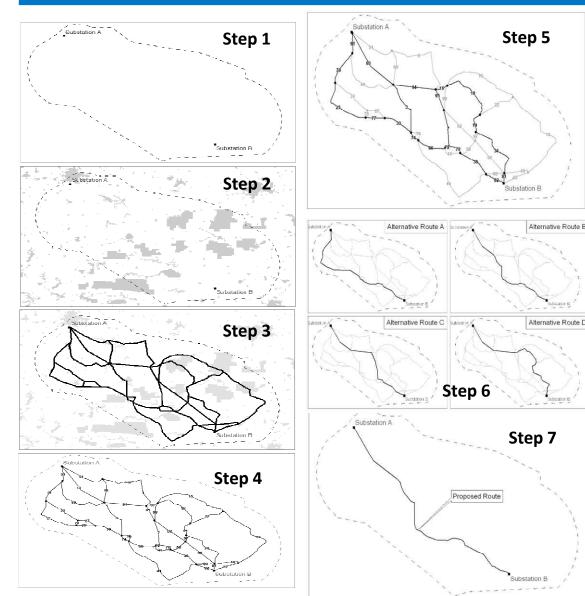
• Significant increases in transfer limits:

LIPA-Con Ed and Con Ed-LIPA Interfaces

Solutions	Base Solution 1	Base Solution 2	Base Solution 3	Alternate Solution 5	Alternate Solution 6	Alternate Solution 7
LIPA-Con Ed Transfer Limit (MW)	+1,627	+1,584	+1,624	+1,906	+3,315	+3,934
Con Ed-LIPA Transfer Limit (MW)	+1,067	+1,090	+1,103	+1,518	+1,573	+2,417

• Other interface benefits, e.g. Newbridge Interface

- Significant reduction in offshore wind curtailment in the Alternate Scenario
- Depending on solutions, the Carbon reduction was observed to be between 700,000 – 1M+ tons in the Alternate Scenario
- Significant production cost, ICAP savings, and load payment reductions:


Solution #	Production Cost Tool	NYCA Production Cost Savings (\$M)	ICAP Savings (\$M)	Load Payment Reductions (\$M)
Base Solution 1		\$ 1,773	\$ 1,418	\$ 3,681
Base Solution 2		\$ 1,621	\$ 1,395	\$ 3,452
Base Solution 3	GE-MAPS	\$ 1,773	\$ 1,418	\$ 3,773
Alt. Solution 5		\$ 1,903	\$ 1,564	\$ 4,618
Alt. Solution 6	ADD Cridview	\$ 2,338	\$ 1,168	\$ 3,649
Alt. Solution 7	ABB Gridview	\$ 2,371	\$ 1,230	\$ 4,410

Economic benefits presented over a 20-year NPV

Routing, Siting & Permitting

PROPEL NY ENERGY

Our Approach

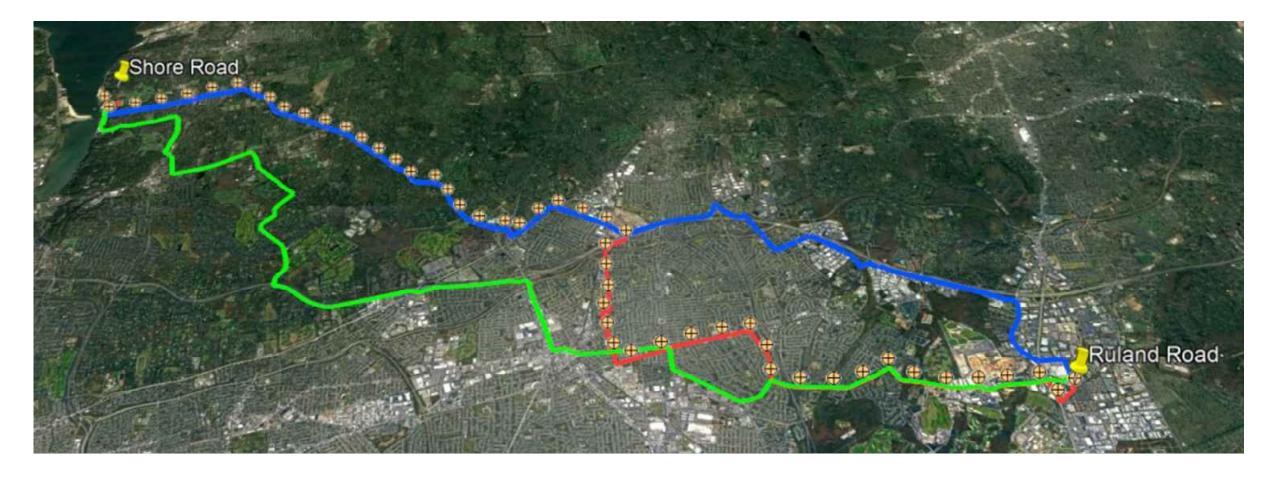
Objective:

Identify routes that limit impacts on natural & human environment while balancing cost

- Step 1: Study area
- Step 2: Study area with constraints and opportunities
- Step 3: Potential routes based on 1st level factors
- Step 4: Potential route network
- Step 5: Refined route network on 2nd level factors
- Step 6: Alternate routes rated on reviews for critical flaws
- Step 7: Preferred route

Routing Limiting Factors

First level:


- Overhead versus underground electric transmission construction
- Use of new rights-of-way ("ROW")
- Use of federal and state highways
- Use of trenchless construction techniques, such as HDDs, jack and bore, and bridge attachments

Second level:

- Infrastructure: highways, railways, subways, associated stations, and shipping channels
- Land features: parks, natural and cultural resources, wetlands, and waterbodies
- Public facilities: schools, hospitals/fire department/emergency services, museums, cemeteries, places of worship, and water treatment plants
- Existing infrastructure and utilities

Route Review – Ruland Rd to Shore Rd

Permitting

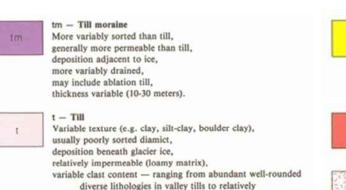
Propel NY Energy team adept at navigating the NYS Article VII Process

• Teams have recent success on active projects and maintain stakeholder/ regulator relationships

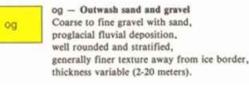
Proposal development included:

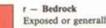
- Initial permitting matrix: federal, state, county and local requirements. (Attachment. B.05.1)
- 30% engineering design
- Alternative analysis for routing/siting/substations
- Initial community outreach

Technical Design & Engineering



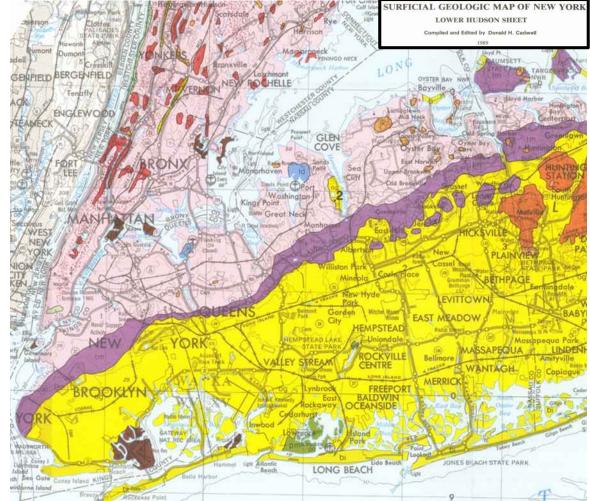
- Design criteria included Civil and Electrical requirements/calculations
- Thorough investigation of existing site conditions
- Strategic placement of underground vaults including trenchless entry/exit pits
- Substantial efforts lead to proposed solutions that are Article VII ready




Existing Site Conditions

- Long Island: Sandy soils; high water table
- **Queens County**: Sandy; till; potential bedrock; heavy utility congestion and penetration
- Bronx/Westchester: known shallow and exposed hard bedrock
- **Geotechnical conditions verified** through public sources

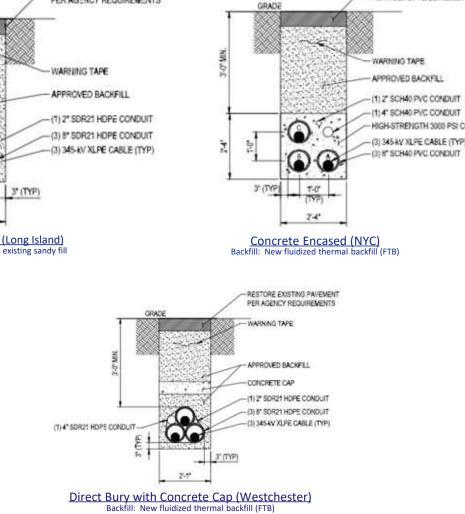
angular, more limited lithologies in upland tills, tends to be sandy in areas underlain by gneiss or sandstone, potential land instability on steep slopes, thickness variable (1-50 meters).



Exposed or generally within 1 meter of surface.

Bedrock stipple overprint Bedrock may be within 1-3 meters of surface, may sporadically crop out, variable mantle of rock debris and glacial till.

U/G Transmission Design Highlights



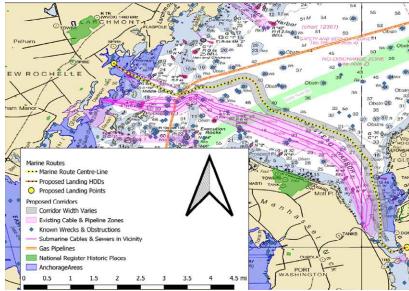
RESTORE EXISTING PAVEMENT

PER AGENCY REQUIREMENTS

RESTORE EXISTING PAVEMENT PER AGENCY REQUIREMENTS **Engineering performed:** GRADE Design Basis Document WARHING TAPE APPROVED BACKFILL Ampacity calculations 2* SDR21 HDPE CONDUIT 3) 8* SDR21 HDPE CONDUIT Pull calculations) 345-KV XLPE CABLE (TYP (1) 4" SDR21 HDPE CONDUI **Optimized 4,000 kcmil cable due to:** 2.7 Direct Bury (Long Island) Backfill: Re-use existing sandy fil Performance characteristics

- Supplier diversity and availability
- Consistency throughout all Solutions
- Flexibility in construction
- Opportunity to leverage communal spare equipment

*3' min requirement shown is code-driven; average depth of cover is ~5' historically


Submarine Transmission Design

Routing Approach

- Multi-stage approach focusing on cable landing opportunities, existing maritime/geotechnical constraints, and best management practices/lessons learned
- Submarine cable system will be entirely buried
- Burial depths will vary depending on the cable location but will at minimum provide 5 feet of cover
- Installation method a function of benthic characteristics, presence of existing cables, pipelines, and other marine infrastructure, and regulatory requirements to maintain federal navigation channels

PROPEL NY ENERGY

Substation Design Highlights

Cost-efficient design

- Site preparation costs evaluated and optimized
- Hybrid AIS/GIS utilized to limit deep pile foundations

Substation footprint – minimized for community benefit

Substation type – AIS with PASS breaker or GIS

Substation Design – Ring Bus or Breaker-and-a-Half

Substation conceptual design include:

- Electrical one line and layout
- Civil
- Structural
- Bill of Materials (BOMs)
- Detailed cost estimates

Hybrid AIS Substation with PASS System

PASS (Plug & Switch System)

Hybrid AIS/GIS flexible, customizable system Close to GIS compactness at AIS value

Why PASS?

- PASS is the most widely installed hybrid switchgear worldwide, protecting networks in many different climates and applications
- Utilized in NYS transmission system as a problem-solving technology
- Delivered fully assembled & tested, energizes in 24 hours on-site
- Modular design enables highly customizable solutions
- When compared to AIS layouts:
 - Compact station via shorter bay lengths
 - Reduces foundation quantity significantly

345 kV AIS

Propel NY Energy benefits:

Innovative, flexible, and cost-effective solutions Demonstrated track record Depth of local knowledge Unmatched routing and technical design

New Yorkers investing in New York:

Alignment with CLCPA targets through reinforced grid Emission reduction benefits Production Cost & ICAP savings, and load payment reductions Economic Development opportunities

PROPELNY ENERGY

New Yorkers invested in New York 350+ years of New York experience